
“Lean and Efficient Software:
Whole-Program Optimization of Executables”

Project Summary Report #5

(Report Period: 7/1/2015 to 9/30/2015)

Date of Publication: September 30, 2015
© GrammaTech, Inc. 2015

 Sponsored by Office of Naval Research (ONR)

Contract No. N00014-14-C-0037
Effective Date of Contract: 06/30/2014

 Technical Monitor: Sukarno Mertoguno (Code: 311)
 Contracting Officer: Casey Ross

Submitted by:

Principal Investigator: Thomas Johnson

531 Esty Street
Ithaca, NY 14850-4201
(607) 273-7340 x. 134

tjohnson@grammatech.com

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Financial Data Contact:
Krisztina Nagy
T: (607) 273-7340 x.117
F: (607) 273-8752
knagy@grammatech.com

Administrative Contact:
Derek Burrows
T: (607) 273-7340 x.113
F: (607) 273-8752
dburrows@grammatech.com

mailto:tjohnson@grammatech.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 SEP 2015 2. REPORT TYPE

3. DATES COVERED
 00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
Lean and Efficient Software: Whole-Program Optimization of
Executables

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GrammaTech, Inc,531 Esty Street,Ithaca,NY,14850-4201

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #5 © GrammaTech, Inc. 2015

2

Data Subject to Restrictions on Cover Page.

1 Financial Summary
Contract Effective Date 06/30/2014
Contract End Date 06/30/2016
Reporting Period 7/1/2015 – 09/30/2015
Total Contract Amount $602,165
Incurred Costs this Period $4,621
Incurred Costs to Date $343,621
Est. Cost to Completion $258,544

2 Project Overview
Background:
Current requirements for critical and embedded infrastructures call for significant increases
in both the performance and the energy efficiency of computer systems. Needed
performance increases cannot be expected to come from Moore’s Law, as the speed of a
single processor core reached a practical limit at ~4GHz; recent performance advances in
microprocessors have come from increasing the number of cores on a single chip. However,
to take advantage of multiple cores, software must be highly parallelizable, which is rarely
the case. Thus, hardware improvements alone will not provide the desired performance
improvements and it is imperative to address software efficiency as well.

Existing software-engineering practices target primarily the productivity of software
developers rather than the efficiency of the resulting software. As a result, modern software
is rarely written entirely from scratch—rather it is assembled from a number of third-party or
“home-grown” components and libraries. These components and libraries are developed to
be generic to facilitate reuse by many different clients. Many components and libraries,
themselves, integrate additional lower-level components and libraries. Many levels of library
interfaces—where some libraries are dynamically linked and some are provided in binary
form only—significantly limit opportunities for whole-program compiler optimization. As a
result, modern software ends up bloated and inefficient. Code bloat slows application
loading, reduces available memory, and makes software less robust and more vulnerable. At
the same time, modular architecture, dynamic loading, and the absence of source code for
commercial third-party components make it hopeless to expect existing tools (compilers and
linkers) to excel at optimizing software at build time.

The opportunity:
Our objective in this project is to substantially improve the performance, size, and robustness
of binary executables by using static and dynamic binary program analysis techniques to
perform whole-program optimization directly on compiled programs: specializing library
subroutines, removing redundant argument checking and interface layers, eliminating dead
code, and improving computational efficiency. In particular, we will apply specialization and
partial evaluation technology, integrating the new technology with the techniques developed
during the previous contract effort. We expect the optimizations to be applied at or

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #5 © GrammaTech, Inc. 2015

3

Data Subject to Restrictions on Cover Page.

immediately prior to deployment of software, giving our tool an opportunity to tailor the
optimized software to its target platform. Today, machine-code analysis and binary-rewriting
techniques have reached a sufficient maturity level to make whole-program, machine-code
optimization feasible. Thus, we believe there is now a great opportunity to design tools that
will revolutionize the software development industry.

Work items:

We expect to develop algorithms and heuristics to accomplish the goals stated above. We
will embed our work in a prototype tool that will serve as our experimental and testing
platform. Because “Lean and Efficient Software: Whole-Program Optimization of
Executables” is a rather long title, we will refer to the project as Layer Collapsing and the
prototype tool as Laci (for LAyer Collapsing Infrastructure).

The specific work items for the base contract period are listed below:

1. Investigate specialization opportunities. The contractor will design and implement limit
studies that will help focus the search for fruitful applications of partial evaluation and set
goals for attainable improvements.

2. Transfer UW technology. The contractor will transfer program-specialization or partial-
evaluation technology from the University of Wisconsin and integrate it into the
contractor’s tool chain.

3. Improve and extend UW technology. The contractor will improve the robustness and
scalability of the transferred technology, and complete partially implemented
components and functionality.

4. Improve and extend IR construction and rewriting. The contractor will improve
intermediate-representation construction and rewriting infrastructure as needed to
demonstrate functionality on the primary test subjects.

5. Develop and maintain test infrastructure. The contractor will create an extensive suite
of test applications, and will maintain and extend it as necessary. The contractor will also
implement validation and measurement functionality that will enable tracking the
robustness and benefits of program transformations.

6. Investigate security implications. As time permits, the contractor will study the effect of
different instruction-generation mechanisms, such as peephole superoptimization, on
security. As time permits, the contractor will also study whether polyvariant
specialization enables (i) the creation of finer security-relevant models of program
behavior and (ii) more accurate or efficient enforcement of security policies. If earlier
tasks that are essential in completing a functional prototype require more effort, we
propose to shift this task to the option period, with the possible adjustments of lower
effort on either or both of the first two option-period tasks.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #5 © GrammaTech, Inc. 2015

4

Data Subject to Restrictions on Cover Page.

7. Produce deliverables and attend required meetings. The contractor will produce
technical documentation in the form of reports and a working software prototype. The
contractor will attend meetings requested by the program monitor.

3 Accomplishments during the reporting period
Unfortunately, due to competing labor demands, we made only minor progress this quarter
only LACI. We did invest some time in continuing to explore options for handling the overly
conservative static/dynamic code partitioning problem identified in the last quarter. We
believe the most direct way forward is to explicitly identify situations in which control
dependences can be ignored, enabling the partial evaluation operation to function for a
larger portion of the code. Our plan is to explore this approach in more detail during the next
quarter.

We can also report that efforts to improve rewriting robustness being made by a separate
research project at GrammaTech. GrammaTech is funded under DARPA’s CFAR project to
develop program variants that leverage diversification in a parallel environment, enabling
robust protection when variants diverge from each other under attack. While the goals of
CFAR are different from the LACI project, the two projects share substantial infrastructure –
in particular CodeSurfer’s machine-code rewriting engine. Over the past quarter, the CFAR
project has implemented a number of improvements to CodeSurfer’s rewriting
infrastructure. As a result of this work, we can now rewrite most of the SPEC 2006
benchmarks. This includes some sizeable applications such as gcc (3.6 MB), gobmk (3.9MB),
and Xalan (5.7MB). This represents a healthy improvement in the robustness of the rewriting
system and will directly benefit LACI’s applicability.

3.1 Reducing Conservativeness of Control Dependences
As we described in last quarter’s report, a key challenge we’ve encountered with the partial
evaluation is the reliance on control-dependence analysis. The analysis limits the partial
evaluator to operate only on those pieces of a program that are not reliant on external input.
If one ignores the control dependences, the partial evaluator will be unable to handle coding
constructs where external input can control computation through altering execution flow.
However, it is often the case that control dependence will unnecessarily rule out constructs
where the partial evaluator could make substantial improvement.

Last quarter, we presented the following example to demonstrate this:

void bar(int input_var)
{
 if (!is_valid_input(input_var)) {
 report_error();
 return;
 }

 /* ... rest of the function ... */
}

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #5 © GrammaTech, Inc. 2015

5

Data Subject to Restrictions on Cover Page.

This code fragment represents a very common idiom where the developer has added a check
at the beginning of a function to validate the arguments that were passed to the function (ie.
to prevent an error from occurring later on). The body of the function after this check is
control-dependent on the “if” statement because the “if” statements controls whether or
not the body gets executed. If the parameter to the function can be controlled by external
input, then the partial evaluator will not operate on any part of the body of the function.

Taking a conservative approach, we can identify explicit patterns for which we can relax the
reliance on control dependence. For example, excluding control dependence edges from
parameter checks may get us a certain distance.

We’re currently looking into whether or not a more principled solution can be found in the
data dependence analysis. Take for example the following code:

 void bar(int input_var)
 {
1: int x = input_var;
2: int y = 0;
3: while (x > 0) {
4: int z = f(); /* Constant computation. */
5: y = g(y, z); /* Computation dependent on x. */
6: x--;
 }
7: return y;
 }

Here, the call to function f() when initializing z inside the loop (line 4) is constant and always
returns the same value. Ideally, we’d like to evaluate this computation statically, eliminate
the variable z, and inline the appropriate value into the call to function g(). Note that we
cannot do the same for g() and y, because the first parameter to g() is the previous value that
y had (either its initial value, 0, or the value resulting from the previous execution of the
while loop.)

Control dependence here indicates that both lines 4 and 5 are control-dependent on line 3,
because the conditional for the while loop dictates whether or not lines 4 and 5 execute.
Thus the partial evaluator would fail to optimize line 4. However, every time line 4 executes,
it performs exactly the same computation. In contrast, line 5 performs a (potentially)
different computation on each execution. A key distinction between the two lines is that line
5 has a cycle in its data dependence graph—in fact it is dependent on itself.

This observation may provide a key to a more principled solution: ignore control
dependences for any computation that has no cycles in its backward slice. It’s not clear
whether this rule will hold up in all situations, but it seems like it will provide a promising
improvement on the current implementation. We plan to explore this possibility in more
detail in the next quarter.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #5 © GrammaTech, Inc. 2015

6

Data Subject to Restrictions on Cover Page.

4 Goals for the next reporting period

In the next reporting period we expect to complete the following:

• Continue exploring potential strategies for making the static/dynamic partitioning
used by the partial evaluator less conservative, so that the partial evaluator can
operate on a wider variety of code.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #5 © GrammaTech, Inc. 2015

7

Data Subject to Restrictions on Cover Page.

5 Milestones
Interim results on multi-month tasks will be reported in the quarterly progress reports.

6 Issues requiring Government attention
None.

Milestone
Planned
Start date

Planned Delivery/
Completion Date

Actual Delivery/ Completion
Date

Kickoff Mtg 9/4/2014 9/4/2014

Transition Specialization Slicing 7/2014 12/2014 12/2014

Robustness & Reliability of IR &
Rewriting

7/2014 12/2014 12/2014 – statically linked
exes

First Quarterly Report 9/30/2014 11/21/14

Transition Partial Evaluation
and Instruction Synthesis

12/2014 5/2015 In progress

Second Quarterly Report 12/30/2014 2/19/2015

Third Quarterly Report 3/30/2015 5/11/2015

Fourth Quarterly Report 6/30/2015 7/3/2015

Fifth Quarterly Report 9/30/2015 10/30/2015

Sixth Quarterly Report 12/30/2015

Seventh Quarterly Report 3/30/2016

Evaluation 4/2016 6/2016

Final Report 6/30/2016

	Project Summary Report #5
	(Report Period: 7/1/2015 to 9/30/2015)
	1 Financial Summary
	2 Project Overview
	3 Accomplishments during the reporting period
	3.1 Reducing Conservativeness of Control Dependences

	4 Goals for the next reporting period
	5 Milestones
	6 Issues requiring Government attention

